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ABSTRACT

The goal of this paper is to analyze ion relaxation around a charged electrode taking into ac-
count finite jon volume and frequency. Time-dependent and electrostatic equations for ion be-
havior near an electrode are developed and include the effects of nonequilibrium and steric hin-
drance. Time-dependent wave equations for the potentials are developed in the Lorentz gauge.
The charge density is expressed as a sum of the quasi-steady state solution plus a nonequi-
librium term. For slowly changing potentials the ions are in quasi-equilibrium and we show
that in this limit the potential satisfies the sinh-Gordon equation. New solutions to this non-
linear time-dependent equation are developed. In the low voltage limit the equation reduces
to the Klein-Gordon equation, time-dependent analog of the Debye-Hiickel equation. We also
present equations for capacitance and surface charge.

1 INTRODUCTION

HE goal of this paper is to model the ion distribution in a solution

around a charged electrode, including effects of both frequency
and excluded volume of the ions, in order to enhance understanding
of the interface. To this end we study the time-dependent concentra-
tion and potential equations [1]. We then consider the electrostatic limit
and develop solutions to a modified Poisson-Boltzmann equation that
includes the excluded volume.

The paper starts with a derivation of equations for the potentials with
charge and current densities that depend on the potentials, then pro-
gresses into a development of a wave equation valid for a steady-state
charge density, and concludes with a study of the electrostatic limit. In
Section 2 we develop differential equations for time-dependent scalar
and vector potentials in the Lorentz gauge. In Section 3 the charge-
concentration is developed using a generalized drift-diffusion equa-
tion and is shown to separate into quasi-steady state and nonequilib-
rium components. The current density is expressed in terms of the ion-
concentration current. Since the ions adjust position in response to an
applied field, the calculation of the potential evolution is very compli-
cated.

We obtain a system of coupled nonlinear integral-differential equa-
tions for the potentials. The time-dependent equation of motion in the
quasi-static limit is shown to be the sinh-Gordon equation and solutions
are developed in Sections 4 and 5. The solution we develop to the mod-
ified Poisson-Boltzmann equation in Section 6 allows a unified and ac-

curate approach to modeling both the Stern and diffuse layers (see Fig-
ure 1) with a single equation [2,3]. Corrections are commonly made
to the Poisson-Boltzmann equation by including an extra layer near the
electrode, commonly called the Stern layer, that varies linearly with po-
tential. In our theory the Stern layer is more adequately modeled since
the finite volume of the ions is taken into account. This Equation reduces
to the traditional Poisson-Boltzmann solution in the limit of infinitely
small ions.

In Section 7 we construct equations for the surface charge density and
capacitance.

2 DIFFERENTIAL EQUATIONS
FOR THE POTENTIALS

In this Section we develop time-dependent differential equations for
the vector and scalar potentials using time-dependent charge and cur-
rent densities.

We consider a symmetric ensemble of positively and negatively
charged ions near a positively charged electrode. We can develop dif-
ferential equations for the scalar and vector potentials if we substitute

F=-vy-4 0

where A is the vector potential, into
V-D=p 2
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Table 1. List of symbols

Symbol Meaning Unit
A |vector potential Vs/m
a®  |volume of an ion m3
c*  |ion concentration ions/m3
¢ |quasi-steady state ion concentration | ions/m3
cq |capacitance per area F/m?
co |ion concentration in absence of a field | ions/m3
D |displacement vector C/m?
Do |diffusion constant m?/s

F(z) |concentration at t=0 ions/m3
fo |a®co
k  |k=27/2p m~1!
ks |Boltzmann’s constant J/K
G |Green's function
g |sources in diffusion equation ions/m3.s
J |current density A/m?
q  |magnitude of charge on an electron C
T  [temperature K
t (time s
y  |normalized potential
ye |integral of normalized electric field
z |axial coordinate m
zc  |valance of the ions
e |permittivity F/m
T [ion flux ions/m2.s
To |T's onboundary ions/m2.s
I's [quasi-steady state ion flux ions/m2.s
Ap  |Debye-screening length m
pe  |mobility m?/Vs
w |radial frequency 1/s
3 |potential \Y%
1o | potential on the electrode v
p  |charge density C/m?
o |surface charge density C/m?
o. |solution conductivity S/m
Te |relaxation time s
| permeability H/m
An _|eigenvalue

and use the Lorentz gauge condition

)
A — =0 3
V-A+ep o ©)
to obtain the pair of equations
2
IY g2y =P
engy — Vb=~ @
024 .
6/15t?——v2A=/LJ (5)

where p is the free-charge density of the ions, J is the current den-
sity, and € and . are the spatially independent static permittivity and
magpnetic permeability. It is possible to generalize the above derivation
of the potential differential equation to include frequency dependence
in the permittivity and permeability by using the Fourier transform of
the pulse-response function as shown in Section 9.4. These generalized
equations will be used in Section 5.
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Figure 1. A positively charged, open-circuited electrode with electrolyte
showing Stern and diffuse layers. v is the potential on the electrode and
2z is the axial coordinate.

3 THE CHARGE
CONCENTRATION

EQUATION FOR THE
CONCENTRATION

3.1

The net charge density p, for a single species of ion, is the sum over
negatively and positively charged ions [4]. The charge concentration for
a symmetrical charge species can be expressed in terms of the concen-
tration ¢* (7, £) in units of ions per cubic meter of solute. However, the
charge concentration depends on the potential.

The ions with charge ¢ have a concentration ¢* that satisfies a gen-
eralized drift-diffusion equation in potentials (7, t) and A(7, t). The
charge density for a symmetrical species is

p(7,t) = zeqle™ (7 t) — ¢~ (7' 1)) ©)
where z, is the valency per ion, and g the magnitude of the electron
charge. The = signs indicate the charge of the ion. The concentration
in the absence of a field is ¢p. As we will see in Section 3, the charge
density has both quasi-steady state and nonequilibrium components.

The current density is expressed in terms of the ion-flux densities I+
that contains both diffusion and drift currents
J(7 ) = 2eq[F (7, 8) = T(7, )] )

The potentials can be calculated once the charge and current densi-
ties are known, but the problem is that the charge and current densities
depend on the potentials.

The ion concentration ¢* (7, t) satisfies the drift-diffusion equation
dcE (7, 1) )

T+
3 +V.I' g
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Equation (8) describes charge conservation with possible sources g™ for
creation or recombination of charge. Once ¢ is found it can be used to
form the charge density (6) and current density (7). In equilibrium the
concentration is simply given by the Boltzmann distribution.

The current density will be developed below. The initial and bound-
ary conditions on (8) are

1. Initial condition c* (7, 0) = F*(7), usually ¢ (7, 0) = co.

2. I‘i on electrode is specified.
3. ¢£(0,t) or ¢t (r — oo,1) specified from the behavior of ¢ (7, ¢) and
A(F t)asT — oo,

The volume of the ions can influence the potential near the electrode
where the concentration is high. Wiegel [5] derived an expression for
the drift-diffusion current given an effective charge concentration which
has finite volume.

In order to take into account the volume of the ions we use Wiegel’s
result for the drift-diffusion current [5] (see Section 9.2 for derivation)

a3V (ct +¢7)

Fe (e t) = Dy | - vet - S0V +e)
(z,%) 0 ¢ 1-a3(ct +¢7)
—— N———
diffusion steric hindrance (9)
n quE‘cjt ch1‘)'><(V><f¥)ci
kT kT

electric interaction
where a? is an ion volume and Dy the diffusion constant. We assume
equal diffusion constants DF = Dy = Dy. The electric field E is re-
lated to the scalar and vector potentials by (1). The steric-hindrance term
is nonlinear in concentration. In our analysis we neglect the magnetic-
force interaction.

magnetic interaction

In one-dimensional rectangular coordinates, assuming only an E,
electric field we have only an A, vector potential component and a z-
component of the ion flux
dct
0z

ctad

It =Dy {—
(10)

+ —
_ It +c )i 2cq Bt
1—a3(ct+c¢) dz kT
In the limit of volume-less ions (a® =
spatial coordinate to

+
ot (2) | i{_

0), (8) and (10) reduce in one

aci(;;,t) 4 Zedbz 2eqE, ot

o L )} =0

In developing a solution to (8) we consider the quasi-steady state
concentration ¢ (2,t) which is a solution of the auxiliary problem
V-IE = g*. We use the term ‘quasi-steady state” since time is con-
tamed in this equation only as a parameter. We will show that the solu-
tion to (8) can be developed in terms of the quasi-steady state solution
(58) as shown in the Appendix Section 9.2. The boundary conditions for
the quasi-steady state solution, with the possible exception of the initial
condition, are generally the same as given above for (8).
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The first three terms in (59) of the Appendix, Section 9.2, are
*(z,t) = 65 (2,1)

+ [ a2 0P ) -

¢

B 4 (ye(#', 7)) Oye )

/dr /dz . . G(z,t,2',71)
0

¢ (2',0)]
(12)

+ ...

where G is Green'’s function in which the solution is expanded. Gen-
erally, Ft = cst (t = 0) = co, and thus the first integral term on
the right hand side of (12) vanishes. The advantage of (12) is that only
the quasi-steady state solution is required and allows a study of the fre-
quency dependence. The boundary condition on the electrodes is sat-
isfied by the quasi-steady state term which is the first term on the right
hand side of (12) since the derivative of Green’s function vanishes on
the electrodes.

The normalized potential is

zcqd

Ye(z, 1) kBT/E 2, 0)dz" + yo(t) (13)
where the normalized potential on the boundary is
2.q d[A,dz
t) = e M
nlt) = ok (w00 + 5= on|
and
e _ 24 0O / ayo
ot = kpToi) T ST
(15)
_ R4 Jz (z f) ’ aﬂ
kBT / e
0
If we neglect the vector potential this reduces to
_ zeqip (2, t)
Ye(2,1) = el (16)

The Fourier transform of (12) is worked out in the Appendix, Sec-
tion 9.3.

There are two cases of primary interest. In the special cases where
I =0, that is for an open-circuited electrode, and for specified ion-
flux density TZ, we present analytical solutions for ¢ In both of these
special cases we assume there are no source terms.

3.1.1 QUASI-STEADY STATE SOLUTION
FOR AN OPEN-CIRCUITED

ELECTRODE

The quasi-steady state solution is required as input to (12). For open-
circuited conditions we assume an electrode positioned at z = 0, ex-
tending to oo, and variations only in the z coordinate (see Figure 1); then
(58) is solved subject to boundary conditions.
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The quasi-steady state solution for open-circuited conditions (I'F =
0) that satisfies the two following boundary conditions

lim (z — o) ¢T(2) = ¢p
30,1 P (0,t) «
0z 1 —a3(cf(0,1) + 5 (0,1)) (17)
Ay (0,8) + 5 (0,8))
0z k % e (0,0)=0
is
ot (2,1) = co exp (Fye) (18)

1+ 4fosinh? (y./2)
where fo = coa®. In the limit of neglecting ion volume we have a
Boltzmann distribution

cE(z,t) = coexp (Fye) (19)

Green's function G for this case is worked out in the Appendix, Sec-
tion 9.2. The charge density (6) is given through use of (12), assuming
cEt=0)=cF(t=0)=co.

¢o sinh(y,)
0y =-2
Pz 1) ol + 4 fosinh®(y./2)

def(2',7)  deg (&

—2z.q|dT / dz [ e
/ dy. dye

o0Ye
a7

This charge density is a nonlinear function of potential.

”] x (20)

(2,t,2,7)+ ...

3.1.2 QUASI-STEADY STATE SOLUTION
FOR SPECIFIED CURRENT FROM
THE ELECTRODE

We consider now the problem for the quasi-steady state solution for
aion-flux density flowing between two electrodes at z = Oand 2z = L
which are at different potentials (see Figure 2). In order to obtain an
analytical solution we first neglect the effects of ion volume.

W, Ty

@ -0 ®-O
@0 @& -0

- @ -0 @

@ - @~ -2
®- - OR

W, Iy

N
™\

N

z=1

NN,

z=0

Figure 2. Two electrodes at different potentials 41 and 4= separated by
an electrolyte solution with current ¥ flowing.

We assume the following initial and boundary conditions are to be
satisfied in 2 € (0, L. For the initial conditions ¢t = cq, ¢ = 0 and
FOi =0, and
r*
Doy

act (0, t)
oz

Zchz ﬂ:
kBT K

(0,t) = @1
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the quasi-steady state solution to the ion-flux density in (58) neglecting
ion \iolume is
5 (2,t) = coexp (Fye(z, 1))

T
Dy

Lol o (Fye(a 1)) / exp (e (2, )7’
(]

We can also obtain a solution that includes ion volume by making a
single assumption: T3 (t)/(1 — a®(ct + ¢7)) ~ TE(t). This as-
sumption is reasonable. The solution with ion volume, denoted by cE

st/
is
& (zt)

+
(2,1
et = e (z )+ (21))
where ¢ are solutions of (22).

(22)

(23)

Green's function to be used in (12) in this case is
5 =
7 20 U(t — 7) exp[—Do A2 (t — 7)]x
nrz nrz’
cos (—L—> cos (—L—> (24)
where U is the unit-step function.

3.2 RELATIVE IMPORTANCE OF
QUASI-STATIC AND
NONEQUILIBRIUM TERMS

G(z,t,2,7) =

Memory is important in the charge density because of the finite dif-
fusion rate and conductivity. If the potential changes slowly and/or the
diffusion constant or conductivity is large, then from (12) we can see
that the steady state dominates. In this approximation, concentration
for time-dependent potentials is just the first term in (12) and the charge-
concentration density is given by (6). Equation (63) indicates that the
nonequilibrium term becomes less important as Do /w > A%, where
we identify the relevant length A p as the Debye screening length. The
reciprocal of the Debye screening length is & = 1/Ap and is given by

5 2cpzig?
k° = o (25)

If we use the Drude model for the conductivity . = 2qcq ., where
[ic is the mobility which is related to the diffusion constant through
te = qDo/ kT we get an expression for the characteristic relaxation
time or frequency as

1 Dy _
YEL S T T

Dukhin and Shilov ([7], Equatlon I11-88) and Grosse [1] give a similar
constraint in a quasi-equilibrium approximation. Basically (26) is indi-
cating that highly conductive and diffusive fluids have a faster relax-
ation time. For example, if the fluid has o, = 100 S and € = 100eq
then w < 1x10° rad/s.

4 POTENTIAL EQUATIONS AT
LOW FREQUENCIES

In this Section we develop the potential in the quasi-static limit.
When (20) is substituted into (4) an integral-differential equation for the
potential in terms of the quasi-steady state solution is obtained which

(26)
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includes nonequilibrium effects and excluded volume

Py Py _ 2 . -
Euét_i - @ - Sk} T[cs (yE) — Cs (ye)]
t
/d, / fdet (1) g (#7)
] dye dye

ay:G(z,t, 2+ (27)

where we have retained only derivatives of the axial coordinate, and
_ zeq¥(zt) )
ksT
We specify for (27) an initial condition and potential or electric field both
on the electrodes and as z — . In addition we have an equation for
the z-component of the vector potential
2
e O el - T3 (0] )
where the current density is given by (7) and (9). To summarize we have
developed equations describing the scalar and vector potentials in an
ion solution as a function of frequency. The solution proceeds by solv-
ing (58) for the quasi-steady state solution and then (8), (27), and (29)
simultaneously for ¢*, 1) and A,. In principle the magnetic field could
be included in which case all vector potential components must be de-
termined. In the approximation of low frequencies and high diffusion
constant the quasi-steady state concentration is a reasonable approxima-
tion for the limits in (26). In this limit we obtain the following expres-
sion for the charge density for an open-circuited electrode, neglecting
ion volume

p(2,t) = —2zcqco sinh y(z, t) (30)
and therefore the inhomogeneous wave equation is
azy 321/ 2 .
v + 352 = k“sinhy (31)

Note that the low-frequency approximation excludes nonequilibrium
effects and thereby simplifies the analysis. In a more general treatment
(27) should be solved numerically.

Equation (31) is the sinh-Gordon equation which is equivalent to
the sine-Gordon equation of an imaginary argument. Unlike the sine-
Gordon equation, the sinh-Gordon one does not have soliton solutions.
A linear approximation of (31) allows a time-harmonic solution.

5 SOLUTION OF THE
TIME-DEPENDENT,
QUASI-STATIC POTENTIAL
EQUATION

It is possible to develop an analytic solution to (31). The solution to
(31) for open-circuit conditions is

y(z,t) =R [4 arctanh [tanh(y0/4)

X exp (—z k2 — wQEu) eXP(iU-’t)H (32)
where b
_ Zeqtho

Yo =T 9

This solution is time harmonic at low voltage. The real part of the func-
tion is denoted by R, also & and 1. here are static values. Equation (32)
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can also be expressed as
(5,8) = RIn ey2_ +1+ (e% — 1)e 2V Wi gt o
Y\z,t) =
e El +1- (ey2£ — 1)e 2VE —wiengiwt
At z = 0 we have

%Q—i—].-*—( }'%L 1>eiwt
€ € _
y(o,t)zmn[ - )
e2 +1—(e2 —1)e«t

] 35)

In the low-voltage limit (y < 1), sinh y reduces to y and we obtain
the Klein-Gordon equation, the time-dependent analog of the Debye-
Hiickel equation

9%y
o

The frequency-domain solution in one spatial dimension to the Klein-
Gordon equation which includes dispersive material properties (see Ap-
pendix, Section 9.4)

y(z,w) = yoexp (—Z\/k2 - wQE*(w)u*(w))

Equation (37) has a cutoff frequency when &2 < w?epor f. =
k/(2m\/Z1), where k? is given by (25). For f < f. the solution is
exponentially damped; otherwise, it is sinusoidal. The cutoff frequency
is very high and the low-frequency assumption breaks down before it
is reached. In the limit of small potential, the frequency component of
(32) reduces to (37).

If we incorporate the excluded volume in the source term in (4) we
have

agy 2

+ 3.2 =K%y (36)

37)

9%y
BarT)

2%y

Lo k2 sinhy
022

1+ 4 fosinh? (y/2)

Due to the symmetry in z and ¢ we can use the change of variable

(38)

a = —iwt + z1/k? — w?ep to write
dy 1 212
— =——=1/In(1+4 h
=\ ahsnk w(@)/2) )

We can approximately integrate (39) in the limit of yy < 1 to obtain
y(z,t) myoe *[1+ (1 — e )5 (1 — —6f0)]  (40)

6 MODIFIED
POISSON-BOLTZMANN
EQUATION WITH EXCLUDED
VOLUME

In this Section we consider the electrostatic limit of (27) in rectangular
coordinates. A review of the solution to the Poisson-Boltzmann equa-
tion is given in Section 9.5. Here we derive an analytical solution for the
potential distribution. The inclusion of the volume of the ions allows the
region near the electrode to saturate, thereby changing the potential dis-
tribution. The finite volume of the ions produces charge separation at
the electrode and decreases the potential decay.

In rectangular coordinates using the charge density (6) we find
%y k?sinhy
dz 1+ 4fosinh” (y/2)

and in the limit as a® — 0 we obtain (72).
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We can integrate (41) to obtain

2 Y .
(d_y) =2 /k:2 simbz ),
dz J 1+ 4fysinh® (2/2) (42)
= 2221n (1 + 4 £y sinh? (y/2))
where zg = \/22¢%/kgTa%¢, or
W F20\/2In (1 + 4fo sinh? (y/2)) 43)

The F signs are for & yq respectively. This solution (43) stands in
contrast to the solution of the Poisson-Boltzmann equation (76).

In order to verify that (43) reduces to the Poisson-Boltzmann solution
(76) in the limit of small fo, consider a Taylor series expansion of (43)

for small a®
dy

5 = [Qf&/zx/isinh}i 2a3f3/2\/§sinh3g

13,6 5/2 5y 9 (44)
+%5a’ fo V2sinh £+0(@ )]

To first order this reduces to the Poisson-Boltzmann solution (76),
since k = v/229+/Jo. Consider the limit as y — oo; we see the
modified equation for dy/dz (43) scales in proportion to y, whereas the
Poisson-Boltzmann equation scales as & sinh (y/2). In the low-field
limit both expressions scale in proportion to . The difference is the re-
sult of charge saturation at the interface. As charge builds up at the in-
terface the finite volume produces charge separation.

In general, the integral of (43) cannot be evaluated analytically. How-
ever, in the case of two terms in the Taylor series expansion of (43), we
can integrate to obtain

Y

dé
—kz= / N . 13
2sinh (0/2) — 2fy sinh” (6/2)
Yo
|, anh (/) | VTotanh! SRGRE
tanh (yo/4) Vv1i+fo
B V/fotanh™? —Mo—f_}; fo" 2

V1i+ fo

This Equation reduces to the Poisson-Boltzmann solution (77) when
fo—0.

7 SURFACE CHARGE AND
CAPACITANCE

The surface charge density o depends on both the scalar and vector
potentials. In one space dimension the electrostatic surface charge den-
sity at the electrode is

_ 9o
g =—e> (46)
The differential capacitance per unit area is
_ 90(%0)
Cq= 9% 47)
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The surface charge with excluded volume is
o=- /p(;c)da: = —5%@ =0)
0 (48)
ekpT |, o . .2 Zeqo
= \/Zzo In (1 + 4 fg sinh (QkBT
The differential capacitance with excluded volume is
Cy = do
47 Qo
2e2g fov/2 sinh (Q—kﬂ%) cosh (ﬁ)
(1 + 4 fosinh? (%r%)) \/ln (1 + 4 fo sinh? <ﬁ¥%))
(49)

These results can be compared to the Poisson-Boltzmann surface charge
density and capacitance equations

o = 24/2kgTecysinh ( 2;:”/;) (50)
and
22q2ecy zeqo
Cqg=14/25—— "eT osh (2kBT> (51)

In the limit as 1o < 1 (49) and (51) yield equivalent results. Equa-
tions (50) and (51) do not yield physical results since they both increase
exponentially with 1.

-8 NUMERICAL RESULTS AND
CONCLUSIONS

We have developed time-dependent wave equations for the poten-
tials and equations for the charge density. We have shown that in the
limit of slowly varying potentials or for solvents with large diffusion
constants, the quasi-static charge distribution is a good approximation
whenw <o /e. Wethen developed solutions to the sinh-Gordon equa-
tion for this quasi-static charge distribution.

In order to study the effects of the excluded volume, in Figures 3 to 5
we plot the potentials in the static limit for both the Poisson-Boltzmann
and modified equations, assuming fo = 0.05. In each case the po-
tential is specified at the boundary on z = 0. The modified Poisson-
Boltzmann results were obtained by numerically integrating (43).

AtHV there is a significant difference between results. This difference
decreases as g decreases. In order to study the concentration depen-
dence on the potential in Figure 6 we plot the potentials as a function of
distance from the interface for different excluded volumes.

InFigures 7 and 8 we contrast the solutions for the surface charge and
capacitance.

Including the volume of the ions allows the modeling of the Stern and
diffuse layers in a unified way. The finite volume of ions allows the Stern
layer to saturate whereas the solutions of the Poisson-Boltzmann equa-
tion yield expressions for the surface charge density and capacitance
that diverge exponentially as the potential increases. Measurements in-
dicate that the capacitance does not rise exponentially as potential in-
creases [8]. We see in Figure 8 that for a finite volume of ions the slope
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—5 Wodified

Poisson-Boltzmann

v (V)

Figure 3. Potential as a function of normalized distance for the Poisson-
Boltzmann and modified equations, 1o = 100 V. The modified Poisson-
Boltzmann equation plotted is the numerical integration of (43) which in-
cludes the effects of ion volume (fo = 0.05). The solution to the Poisson-
Boltzmann equation is given by (78).

1003

8 =5 Modified
-~ Poigson-Boltzmann

(V)

ob— w1 v s
0 0.2 04 0.6 08 1 1.2 14 16 18

kz

Figure 4. Potential as a function of normalized distance for the Poisson-
Boltzmann and modified equations, 1po = 10 V. The modified Poisson-
Boltzmann equation plotted is the numerical integration of (43) which in-
cludes the effects of ion volume (fo = 0.05). The solution to the Poisson-
Boltzmann equation is given by (78).

—5— Modified
Poisson-Boltzmann

(V)

Figure 5. Potential as a function of normalized distance for the Poisson-
Boltzmann and modified equations, ¢po = 1 V. The modified Poisson-
Boltzmann equation plotted is the numerical integration of (43) which in-
cludes the effects of ion volume (fo = 0.05). The solution to the Poisson-
Boltzmann equation is given by (78).

of the capacitance curve decreases as voltage increases. As the ion vol-
ume decreases, the solution approaches that of the Poisson-Boltzmann
equation.

The time-dependent normalized potential is plotted as a function of
distance from the electrode vs. time in Figure 9. The following condi-
tions were used in the numerical calculations:
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100 3

ar3c0=1E2
80 —3- a3 c0=1E-4

w{V)

Figure 6. Effect of ion volume on potential as a function of normalized
distance for the modified Poisson-Boltzmann

Poisson-Boltzmann
15 — a*3c0= 1E-4
—A—a*3c0=1E6
12+
s{Cm? st
a
6 X

Figure 7. Comparison of the surface charge density in C/m? from the
Poisson-Boltzmann and modified Poisson-Boltzmann equations vs. nor-
malized potential.

80

0

Poisson-Boltzmann
——-a%3c0=1E-4
—A— a*3c0 = 1E6

60

50
C,(Fim?2) 40

30

Figure 8. Comparison of the capacitance per unit area from the Poisson-
Boltzmann and modified Poisson-Boltzmann equations vs. normalized po-
tential.

1. The initial condition was the static Poisson-Boltzmann potential.
2. The solution and its derivative vanishes at oo,

The time-dependent equation allows the modeling of frequency-
dependent behavior near an electrode. We used the following param-
eters in the plot in Figure 9: &, = 15,k = 5x10%, f = 1x106,
yo = 1. We see in Figure 9 that the potential is time harmonic at low
voltages and nonlinear at HV.

To summarize we have developed equations to describe the time-
varying potentials around an electrode which includes the volume of
ions. The charge density has been developed as a nonlinear function of
potential and has both steady-state and nonequilibrium components. In
the case of fast-relaxing fluids, at low frequencies the quasi-static term
dominates. We give a constraint on frequency and diffusion constant
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Figure 9. Time-dependent normalized potential as a function of distance
and time.

where the quasi-steady state approximation is valid. A similar con-
straint was derived by Dukhin and Shilov [7] for a more simplified ap-
proach. We have also developed an equation at the electrostatic limit
for the potential that includes the excluded volume. This solution was
shown to reduce to the Poisson-Boltzmann result in the limit of neglect-
ing ion volume.

9 APPENDICES

DIFFUSION EQUATION FOR
FINITE-VOLUME IONS

9.1

If the ions in solution are assumed to have a finite volume the density
determined after subtracting out the ion volume from the fluid is higher
than the density determined by assuming volume-less ions. This con-
centration difference modifies the concentration flux by increasing the
gradient. The ion volume also decreases the diffusion coefficient by de-
creasing the mean free path. Due to these two competing effects the dif-
fusive flux is modified [9]. The net result is an additional steric diffusion
term due to ion volume. This term has the same sign as the normal dif-
fusion term —V ¢ since the ion volume increases the effective particle
gradient. We now derive the drift-diffusion current with ion volume.
Let

= ~  DyzE

t_ _ : 0%t &

[* = —D(e)je + =7 (52
assuming

= ct

=V [1—_—(7—)} o3
and

D(c) = Do(1 = a*(ct +¢7)) (54)

Using (53) and (54) we obtain
Docta®

—D(¢)jo = =DVt — ——————
(c)se ove 1—a?(ct +¢7)

V(ct +¢7) (55)

and therefore

= Doctal
+ _ + _ 0 A+ -
[ =-DoVe 11— a3(6+ + C_>V(C e ) (56)
DOZchCi
kT
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9.2 DIFFUSION EQUATION FOR ION
FLUX

9.2.1 STEADY STATE FUNCTION

The quasi-steady state solution ¢; is the solution of the following one-
dimensional equation

d%ct 9 cta? (et +¢7)
Do = Do 11T 3(S++ 7)oz
2 o a’(cy + cs )
c |+
kBTEZC8 ] g
or by integration
_ocF ctad et +¢)
0z 1—a3(ch +c5) dz
y + (59
Zcq + 1 / +/. Y
E,cf — — ,t)d -
P e Do g (z )z-l—Do
0

where ['Z" are integration constants determined by boundary conditions
on the ion-flux density.

The solution of (8) is found as an expansion in terms of the quasi-
steady state solution. The advantage of this approach is that only the
much simpler steady-state equation needs to be solved. Assuming the
initial condition is F** we have

ct(z,t) - cE(z,t) = /dz’G(z,t,z’,O)[Fi(z’) —cE(Z,0)]
¢
oct (2, 1)
_ ! s ? !
2/d7'/dz v G(z,t,2',7)

0
t T

+/d7‘/dz'/d0/dz”

0 0
Gz, t, 2, 1)+ ...

2 A 1
e (27,6) 638(922 .9) G(z', 12", 0)x

(59)

Truncation of (59) after the second term is valid at sufficiently low
frequencies. Green's function satisfies
0G(t, z,1,%") Gty 2,7, 2)
_ =Dy :
or az’

+0(z— 25t —7)
(60)

which is solved with Neumann boundary conditions on electrodes.

9.2.2 GREEN’S FUNCTION FOR
OPEN-CIRCUITED ELECTRODE

The solution to (8) for z € [0, o] expressed in terms of the quasi-
steady state solution (58) [6] for an open-circuited termination can be
obtained using a cosine transform. The Green function used in (12) for
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this case is .
Gz, t,2,1) = %/U(t — 1) cos (Az) cos (Az')x
0
exp (—DoA%(t — 7))dA
=U(t—7)x
z—2')2 gz+z')2
v [eXP (= 25a=my) +exp (= 4Do(t—r))]

4\/D0(t - T)

(61)

9.3 FOURIER TRANSFORM OF THE
CONCENTRATION

The Fourier transform can be taken of (12) by the convolution theo-
rem. We need the Fourier transform to study the frequency constraints
on our theory. Also helpful is the following identity

2
\/\;37_;{ exp 4—D$§ - /exp (~Dof’t —ifz)dB  (62)

—oo

The Fourier transform of ¢ £, denoted by ~, is

E(z,w) =cTE(2,w) + 2i,/ D5 / dz'TE (7 | w)
0
X {cosh Jemz)w 2—5; @ _ ginh v/ G—2)w 2’5(; 2w (63)
+ cosh y/ EEZ)w Z+Dz; 2 _sinh ';(——LZ“LDZ(; 2“}
Note that the relevant length is given by 1/ Do /w.

9.4 GENERALIZED WAVE
EQUATION

In order to derive an equation that allows frequency dependence in
permittivity and permeability it is necessary to write I and the Lorentz
gauge condition as convolutions in the form

5(t) = /f(r)E(t —T)dT

- . (64)
= [ 1 I:V’l/)(t—’r) + 34%;—7)] dr
where C
e*(w) = / () exp (—iwr)dr @)
and - 3
VA@) = - / g(T)%—f(t ) (66)
where "
@i @) = [omew(-wnir @)
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Therefore

—

V-D(t) = —/f(T) [V%(t —7)+ V'a—A(—tat_—T)}dT (68)
0

Now consider the Fourier transform of (68) in the low-field limit and
the use of (66). In the frequency domain e*, where * denotes frequency-
domain complex permittivity, is a function of w. In the frequency do-
main the wave equation is

e (w)p* (w)w? Y +V2 Y= k?(w)sinhy
Note that the tilde is over the entire sinh y.

9.5 POISSON-BOLTZMANN
EQUATION

(69)

In this Section we review the electrostatic theory for ions in an ap-
plied potential neglecting ion volume. In this limit we let both the ion
volume and frequency go to zero. The time-independent version of (31)
for infinitely small ions is the Poisson-Boltzmann equation [10], which
is commonly used for modeling the ion atmosphere around a charged
object [10-12]. If we assume a positively charged electrode then the pos-
itive ions in the solution are counterions and the negatively charged ions

are co-ions. The concentration of ions followzsz} Boltzmann statistics
+ Zcq
¢ = coexp (F kBT)
These distributions indicate that there is high probability of negative
ions residing near the electrode and a low probability of co-jons residing
near the electrode.

(70)

The potential satisfies
v+ 2 =0 (71)
The Poisson-Boltzmann equation (71) in one-dimensional normalized
rectangular coordinates can be written
(72)

In (72) k produces damping of the fields. As an example, a liquid
with an ion density co = 6x1024 jons m~3, and &/, = 78 yields k ~
2x10% m~1. This value of 1/k corresponds to a skin depth of 5 nm.

The boundary conditions for (72) are

_ - _ Zcq¢0
y(z=0)=yo = TaT (73)
where ) is the potential on the boundary, and
zlinl y(2) =0 (74)
. dy
lim =2Z(z) =
lim 7(z) =0 75

The integrals of the Poisson-Boltzmann equation are well known, but
are reproduced here for later comparison [8]. The first integral is

d
d—z = —2ksinh (y/2) (76)
and the second is
y(z) = 4 tanh ™! [tanh (yo/4)e %% (77)
or " v
0 1 0 _ 1 ——kz
y(z) = n | gt le” Z e 78)

Yo Yo
e 41— (e > 1)e—k=
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